- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Andrews, Brett_H (1)
-
Dey, Biprateep (1)
-
Izbicki, Rafael (1)
-
Lee, Ann_B (1)
-
Newman, Jeffrey_A (1)
-
Zhao, David (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Key science questions, such as galaxy distance estimation and weather forecasting, often require knowing the full predictive distribution of a target variableYgiven complex inputsX. Despite recent advances in machine learning and physics-based models, it remains challenging to assess whether an initial model is calibrated for allx, and when needed, to reshape the densities ofytoward ‘instance-wise’ calibration. This paper introduces the local amortized diagnostics and reshaping of conditional densities (LADaR) framework and proposes a new computationally efficient algorithm (Cal-PIT) that produces interpretable local diagnostics and provides a mechanism for adjusting conditional density estimates (CDEs).Cal-PITlearns a single interpretable local probability–probability map from calibration data that identifies where and how the initial model is miscalibrated across feature space, which can be used to morph CDEs such that they are well-calibrated. We illustrate the LADaR framework on synthetic examples, including probabilistic forecasting from image sequences, akin to predicting storm wind speed from satellite imagery. Our main science application involves estimating the probability density functions of galaxy distances given photometric data, whereCal-PITachieves better instance-wise calibration than all 11 other literature methods in a benchmark data challenge, demonstrating its utility for next-generation cosmological analyzes99Code available as a Python package here:https://github.com/lee-group-cmu/Cal-PIT..more » « less
An official website of the United States government
